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Abstract 8 

This study applies an artificial neural network (ANN) to develop models for forecasting 9 

carbon emission intensity for Australia, Brazil, China, India, and USA. Nine parameters that 10 

play an essential role in contributing to carbon emissions intensity were selected as input 11 

variables. The input parameters are economic growth, energy consumption, R&D, financial 12 

development, foreign direct investment, trade openness, industrialisation, and urbanisation. 13 

The study used quarterly data which span over the period 1980Q1-2015Q4 to develop, train 14 

and validate the models. To ensure the reproducibility of the results, twenty simulations were 15 

performed for each country. After numerous iterations, the optimal models for each country 16 

were selected based on predefined criteria. A 9-5-1 multi-layer perceptron with back-17 

propagation algorithm was sufficient in building the models which have been trained and 18 

validated. Results from the validated models show that the predicted versus actual values 19 

indicate approximately zero errors along with higher coefficients of determination (R2) of 20 

0.80 for Australia, 0.91 for Brazil, 0.95 for China, 0.99 for India and 0.87 for USA. The 21 

Partial Rank Correlation Coefficient (PRCC) results reveal that for Australia, R&D has the 22 

highest sensitivity weight while for Brazil and the USA, urbanisation has the highest 23 

sensitivity weight. For China, population size has the highest sensitivity weight while energy 24 

consumption has the highest sensitivity weight in India. The ANN models presented in this 25 

study have been validated and reliable to predict the growth of CO2 emission intensity for 26 

Australia, Brazil, China, India, and USA with negligible forecasting errors. The models 27 

developed from this study could serve as tools for international organizations and 28 

environmental policymakers to forecast and help in climate change policy decision-making. 29 
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1. Introduction 32 

This study sought to use Artificial Neural Network (ANN) to develop models for 33 

forecasting carbon emission intensity for Australia, Brazil, China, India, and the USA. Global 34 

warming has been the most challenging environmental issue in the history of humanity 35 

(Acheampong, 2018). Thus, the increasing concentration of greenhouse gases in the 36 

atmosphere leading to global warming has severe implications for both economic and human 37 

development. Carbon dioxide is the primary greenhouse gas behind global warming. 38 

Therefore, efforts by international organisations to mitigate the adverse effect of global 39 

warming have been a focus on policies to reduce carbon emissions (Tamazian, Chousa, & 40 

Vadlamannati, 2009). Global carbon emissions have been increasing despite the global effort 41 

to reduce it. According to the International Energy Agency (2018) report, global energy-42 

related carbon emissions increased by 1.4% in 2017. This represents an absolute increase of 43 

460 million tons (Mt) reaching a historic high of 32.5 gigatons (Gt) for the past three years 44 

after remaining flat. This astronomic increase in carbon emissions conflicts with the Paris 45 

agreement on climate change to reduce carbon emissions.  46 

While the global economy has witnessed an increase in carbon emissions, countries such 47 

as the USA, UK, Mexico, and Japan have experienced a sharp reduction in carbon emissions 48 

in 2017. For instance, carbon emissions dropped by 0.5% representing 25Mt to 4810 Mt in 49 

the USA (International Energy Agency, 2018). On the other hand, the role of the Asia 50 

economies in carbon emissions cannot be underestimated. Two-third of global carbon 51 

emissions comes from Asian countries. Specifically, China and India are major players 52 

contributing to the increase in global carbon emissions. In the recent report by International 53 

Energy Agency (2018), carbon emissions increase from China increased by 9.1 gigatons in 54 

2017 which is 1% higher than the level of emissions in 2014. Additionally, India experienced 55 
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per-capital emissions of 1.7t CO2. Southeast Asian has also contributed significantly to global 56 

emissions, with Indonesia playing a major in this region. 57 

Understanding the future trend of carbon emissions at the global, regional, and national 58 

level could provide insight for developing appropriate environmental policies and strategies 59 

to mitigate carbon emissions. Thus, developing a reliable model for predicting the growth of 60 

carbon emissions could serve as the tool for international organisations and environmental 61 

policymakers to design and implement appropriate environmental policies and strategies to 62 

control environmental problems. Over the decades, some researchers have used classical 63 

statistical and econometric approaches to model or forecast the growth of carbon emissions. 64 

For instance, regression analysis has been the most popular estimation technique to study the 65 

causal relationship between carbon emissions and other independent variables such as 66 

economic growth, population, energy consumption, technology, globalisation and among 67 

others (see for example, Ahmad et al., 2017; Ahmed, Rehman, & Ozturk, 2017; Al-Mulali, 68 

Ozturk, & Solarin, 2016; Almeida, Cruz, Barata, & García-Sánchez, 2017; Grossman & 69 

Krueger, 1995; Köne & Büke, 2010). However, the effectiveness of regression depends on 70 

the reliability and availability of independent variables (Zhou, Ang, & Poh, 2006). 71 

Additionally, given that variables for modelling carbon emissions are chaotic, non-stationary, 72 

and non-linear, the classical statistical and econometric approaches are not suitable for 73 

modelling such a complex behaviour (Gallo, Contò, & Fiore, 2014; Hussain & Reynolds, 74 

1975; Stanley, 1997).  75 

In addition to the statistical and regression approaches, some scholars have also employed 76 

time series models such as Box-Jenkins Autoregressive Integrated Moving Average 77 

(ARIMA) and Autoregressive Moving Average (ARMA) to forecast emissions. For accurate 78 

forecasting using ARIMA and ARMA models, a large number of historical observation for 79 

the variable of interest is required (Pao, Fu, & Tseng, 2012; Zhou et al., 2006). Other 80 
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researchers have also employed the Grey Model (GM) prediction especially, GM (1, 1) to 81 

forecast carbon emissions (see Ding, Dang, Li, Wang, & Zhao, 2017; Lin, Liou, & Huang, 82 

2011; Pao & Tsai, 2011; Majeed Safa, Nejat, Nuthall, & Greig, 2016; Wu, Liu, Liu, Fang, & 83 

Xu, 2015). Generally, GM performs best with limited data (Yin & Tang, 2013). However, the 84 

forecasting accuracy of the GM (1, 1) has been questioned (see Zhou et al., 2006). 85 

Additionally, comparative studies have shown that ANN produces superior forecasting 86 

results relative to ARIMA, ARMA, classical statistical and regression approaches (Falat & 87 

Pancikova, 2015; Kohzadi, Boyd, Kermanshahi, & Kaastra, 1996; Prybutok, Yi, & Mitchell, 88 

2000; Stamenković, Antanasijević, Ristić, Perić-Grujić, & Pocajt, 2015; Valipour, Banihabib, 89 

& Behbahani, 2013).  90 

The forecasting ability of ANN has made it received a widespread application in the field 91 

of engineering (Ahmadi, 2011; Ahmadi, Soleimani, Lee, Kashiwao, & Bahadori, 2015; 92 

Valipour et al., 2013), agriculture (Khoshroo, Emrouznejad, Ghaffarizadeh, Kasraei, & Omid, 93 

2018; Majeed Safa et al., 2016; M. Safa & Samarasinghe, 2011; Soltanali, Nikkhah, & 94 

Rohani, 2017), energy (Deb, Zhang, Yang, Lee, & Shah, 2017; Debnath & Mourshed, 2018; 95 

Jebaraj & Iniyan, 2006), and finance (Kara, Acar Boyacioglu, & Baykan, 2011; Moghaddam, 96 

Moghaddam, & Esfandyari, 2016). One of the main advantages of ANN is its ability to use 97 

prior information to model a complex non-linear system, and its forecast results are robust 98 

since it can approximate non-linear input-output relationship to any degree of accuracy in an 99 

iterative manner (M. Safa & Samarasinghe, 2011; Sözen, 2009). Also, ANN can handle noisy 100 

data, accommodating multiple variables with non-linear, linear, and unknown interactions 101 

and make a good generalisation (Colwell, 1994; Hagan, Demuth, Beale, & De Jesús, 1996; 102 

M. Safa & Samarasinghe, 2011). Despite the forecasting ability of ANN, its application for 103 

forecasting carbon emissions intensity is still limited (see Zhao, et al., 2018). Therefore, this 104 

study utilised ANN to develop models for forecasting carbon emissions intensity for 105 
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Australia, Brazil, China, India, and USA. These countries are studied because they are among 106 

the top carbon-emitting countries.  107 

In this direction, this study makes several distinct contributions to a new body of 108 

knowledge: Firstly, unlike the previous studies which have forecasted carbon emissions using 109 

only economic growth and population as input variables (see Pao et al., 2012; Pao & Tsai, 110 

2011; Zhao & Du, 2015), this study incorporates other variables such as energy consumption, 111 

R&D, financial development, FDI, trade openness, industrialisation, and urbanisation, which 112 

play important role in contributing to  carbon emissions, in our model to prevent 113 

underestimation of carbon emissions intensity. Secondly, unlike the previous forecasting 114 

studies on emissions, this study utilises the Partial Rank Correlation Coefficient (PRCC) to 115 

conduct sensitivity analysis to determine the input variable that is most influential in 116 

contributing to carbon emissions for the respective countries. Khoshroo et al. (2018), Marino, 117 

Hogue, Ray, and Kirschner (2008) and Saltelli and Marivoet (1990) argue that  PRCC is the 118 

most reliable and efficient method for sensitivity analysis. Additionally, unlike previous 119 

studies, this study uses high-frequency data to provide accurate forecasting models. Finally, 120 

given that this study focuses on the major carbon-emitting countries, the models that will be 121 

developed from this study would help environmental planners in climate change policy 122 

decision-making.  123 

The remaining sections are organised as follows. Section 2 provides a literature review 124 

while section 3 provides an overview of the research methodology and data, followed by 125 

results and discussions in section 4. Section 5 also presents the proposed closed-form formula 126 

for forecasting carbon emissions intensity while section 6 presents the sensitivity analysis. 127 

Conclusions and policy implications are presented in section 7.  128 

 129 

 130 
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Nomenclature  
  R2 Coefficients of determination 
AD Absolute deviation ReLU rectifier function 
ANN Artificial neural network RNN recurrent neural network 
ARIMA Autoregressive Integrated Moving Average SD standard deviation 
ARMA Autoregressive Moving Average SE standard error �����  biases of the kth hidden neuron SVR support vector regression 
BP back-propagation TRAD Trade Openness 
CI confidence interval URB Urbanisation 
CO2 Carbon emission intensity ���	
� standardization �� exponential function � observation for the output parameter 
ENER Energy consumption  �� mean of the CO2 intensities 
FD Financial development �	 actual CO2 intensity 
FDI Foreign direct investment  �
��� normalization 
FFMLP feedforward multilayer perceptron �� predicted CO2 intensity 

GDP Gross Domestic Product   
GM Grey Model Greek letters 
Gt gigatons   
IMF International Monetary Fund ����� rectifier function 
INDUS  Industrialisation  ����� sigmoid function 
MAD mean absolute deviation � mean of the observations max��� maximum observation σ standard deviation of the observations 
MEy mean error on prediction   min��� minimum observation Subscript 
MLP multi-layer perceptron   
MSE mean squared error � input data (0, 1, 2, 3, 4,….n) 
MSEtest mean squared error on test dataset � �th input parameter 
MSEtrain mean squared error on training dataset   
Mt million tons Superscript  ! number of neurons in the hidden layer    " number of input parameters ����� bias of the output neuron  � number of output parameters #� kth hidden neurons  �� number of training samples $% Input value of �th input parameter &' Output ( number of input data 
Pmean population mean ) numbers of input parameters (closed-

form formula) 
POP Population  * number of hidden neurons (closed-

form formula) 
PRCC Partial Rank Correlation Coefficient +%,�"!  weight of the link between $% and #� 

R&D Research and Development +�,'!�  weight of the link between #� and &' 
 

 132 

 133 

 134 
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 135 

2. Determinants of carbon emissions 136 

In this section, we provide a brief overview of the literature that supports the variables 137 

that were used as inputs for the modelling. Following the existing literature, we explore the 138 

impact of economic growth, energy consumption, population size, R&D, urbanisation, 139 

globalisation (FDI and trade openness) and industrialisation on carbon emissions. For clarity 140 

purpose, the literature is divided into the following segments: economic growth–carbon 141 

emissions nexus, energy consumption–carbon emissions nexus, population size–carbon 142 

emissions nexus, R&D–carbon emissions nexus, urbanisation–carbon emissions nexus, 143 

financial development–carbon emissions nexus, industrialisation–carbon emissions nexus and 144 

globalisation (FDI and trade openness)–carbon emissions nexus. 145 

2.1. Economic growth-carbon emissions nexus 146 

Economic growth is argued to be the primary force behind the persistent increase in 147 

global environmental pollution (carbon emissions). The nexus between economic growth and 148 

carbon emissions have been widely studied. Some scholars are of the view that economic 149 

growth has an adverse effect on the environment by increasing carbon emissions (Grove, 150 

1992) while others contend that economic growth is necessary to improve the quality of the 151 

environment (Meadows, Randers, & Meadows, 1992). Majority of the studies on the nexus 152 

between economic growth and carbon emissions is much rooted in the Environmental 153 

Kuznets Curve (EKC) hypothesis1. The EKC hypothesis assumes that an inverted U-shaped 154 

relationship exists between economic growth and carbon emissions. Thus, at the early stages 155 

of economic growth, carbon emissions increase, but beyond a certain level of economic 156 

growth, carbon emissions reduces (Grossman & Helpman, 1991; Grossman & Krueger, 1995; 157 

Stern, 2004). Findings from the empirical studies on the impact of economic growth on 158 

                                                           
1
 For literature on the nexus between carbon emissions and economic growth see the extensive literature survey 

of (Dinda, 2004). 
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carbon emissions remain highly contentious. For instance, Ahmad et al. (2017) studied the 159 

nexus between economic growth and carbon emissions in Croatia using ARDL and the 160 

results reveal that inverted U-shape relation between carbon emissions and economic growth 161 

in the long run and this supports the EKC hypothesis. The Granger causality based on the 162 

VECM approach shows that bi-directional causality exists between carbon emissions and 163 

economic growth in the short run and unidirectional causality from economic growth to 164 

carbon emissions in long run.  165 

For the case of Asia economies, Apergis and Ozturk (2015) employed the GMM to 166 

examine the nexus between economic growth and carbon emissions. The results confirm the 167 

validity of the EKC hypothesis. Similarly, Narayan and Narayan (2010) used panel 168 

cointegration technique to investigate the relationship between economic growth and carbon 169 

emissions for 43 developing countries and their findings confirm the EKC hypothesis in 170 

Middle Eastern and South Asian countries while the EKC hypothesis was not confirmed in 171 

Africa, East Asia and Latin America. Using GMM, Tamazian and Bhaskara Rao (2010) 172 

found that the EKC hypothesis exists in transitional economies. In another study, Tamazian, 173 

Chousa, and Vadlamannati (2009) found that economic growth degrades the environment by 174 

increasing carbon emissions. Additionally, Stern and Common (2001) and Stern (2004) found 175 

that carbon emissions monotonically increases with economic growth, which does not 176 

confirm the EKC hypothesis. Similarly, using GMM-PVAR, the empirical findings of 177 

Acheampong (2018) revealed that economic growth reduces carbon emissions at the global 178 

level and Caribbean-Latin America countries while it has an insignificant effect on carbon 179 

emissions for countries in sub-Saharan Africa, Asia-Pacific and the Middle East and North 180 

Africa (MENA). Using data from Malaysia, Saboori, Sulaiman, and Mohd (2012) revealed 181 

that the EKC hypothesis exists. In China, Liu and Bae (2018) found that economic growth 182 

increases carbon emissions. 183 
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2.2. Energy consumption-carbon emissions nexus 184 

The Kaya identity shows that one of the key factors that influence the evolution of 185 

carbon emissions in the intensity of energy consumption (see Acheampong, 2018). 186 

Additionally, the IEA (2018) report further suggests that energy intensity is one of the two 187 

drivers of carbon emissions, the other being carbon intensity. While global carbon intensity 188 

declined less in 2017 than in 2016, the rate remains similar to the average rate of 189 

improvement in 2014-2016 – partly driven by the increasing expansion of renewables. 190 

However, the slower improvement in the energy intensity of energy demand in 2017 was not 191 

sufficient to counteract the effect of higher economic growth, leading to the increase in global 192 

energy-related carbon emissions in 2017 (IEA, 2018). The empirical literature suggests that 193 

energy consumption has an important impact on carbon emissions. For instance, using data 194 

from China, Zhang and Cheng (2009) reported that energy consumption increases carbon 195 

emissions. Similarly, Shahbaz, Hye, Tiwari, and Leitão (2013) reported that energy 196 

consumption increases carbon emissions in Indonesia. Also, using data from Kuwait, 197 

Salahuddin, Alam, Ozturk, and Sohag (2018), revealed that energy consumption increases 198 

carbon emissions. Similarly, using data from 14 MENA countries, Omri (2013) reported that 199 

energy consumption increases carbon emissions. Focusing on Bangladesh, Jahangir Alam, 200 

Ara Begum, Buysse, and Van Huylenbroeck (2012) reported that energy consumption 201 

increases carbon emissions. Similarly, Halicioglu (2009) reported that energy consumption 202 

stimulates carbon emissions in Turkey. The results of Begum, Sohag, Abdullah, and Jaafar 203 

(2015) also revealed that energy consumption stimulates carbon emissions in Malaysia. Using 204 

data from China, the empirical findings of Wu, Shen, Zhang, Skitmore, and Lu (2016) 205 

revealed that energy consumption increases carbon emissions.  206 

2.3. Population-carbon emissions nexus 207 
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Population size, which refers to the total number of people living in a particular 208 

country, has an important effect on carbon emissions. In almost all climate models, 209 

population size is the only demographic variable considered (Zhu & Peng, 2012). In a 210 

classical study, Birdsall (1992) argue that population size affects carbon emissions through 211 

energy use and deforestation. Additionally, population size could influence the scale and 212 

structure of consumption and production, thereby increasing carbon emissions (Zhu et al., 213 

2012). The empirical findings of Zhu et al. (2012) revealed that population size has no 214 

significant impact on carbon emissions but it is population structure, population age and 215 

household size that matter. Using data from 93 countries, the findings of Shi (2003) revealed 216 

that population size is proportionally related to the growth of carbon emissions. Using data 217 

from Europe, Weber and Sciubba (2018) reported that the population growth rate has a 218 

considerable effect on carbon emissions is Western Europe but has a negligible effect on 219 

carbon emissions in Eastern Europe.  Focusing on Malaysia, the findings of Begum et al. 220 

(2015) revealed that the population growth rate has no effect on carbon emissions. Using 128 221 

countries, Dong et al. (2018) reported that population size contributes significantly to the 222 

growth of carbon emissions.  223 

2.4. R&D-carbon emissions nexus 224 

Technological innovation is another important variable that influences the 225 

environment (carbon emissions). Technological innovation could be helpful in switching to 226 

more sustainable sources of energy including renewables which could reduce carbon 227 

emissions (Shahbaz, Nasir, & Roubaud, 2018). Shahbaz et al. (2018) further argue that 228 

innovation related to energy is more prone to influence energy consumption and, hence, 229 

carbon emissions, specifically energy innovations which are intuitively more relevant and 230 

important for environmental quality. However, investment in research and development 231 

(R&D) is crucial for facilitating the promotion of technological progress, which could lead to 232 
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greater efficiency in energy and the use of natural resources, thereby reducing carbon 233 

emissions (Churchill, Inekwe, Smyth, & Zhang, 2019). On the other hand, the positive effect 234 

of R&D on economic growth and trade could increase carbon emissions through the scale 235 

effect of larger production associated with economic growth and trade liberalisation 236 

(Churchill et al., 2019). In an empirical study, Tamazian et al. (2009) reported that R&D 237 

contributes to the mitigation of carbon emissions in BRICS. The study of Churchill et al. 238 

(2019) also revealed that R&D reduces carbon emissions in G7 countries. Using data from 239 

France, Shahbaz et al. (2018) reported that R&D contributes to the reduction of carbon 240 

emissions. Fernández-Fernández et al. (2018) also used data from the European Union (15), 241 

the United States and China; their results revealed that R&D contributes to the reduction of 242 

carbon emissions. Using data from China, Zhang, Peng, Ma, and Shen (2017), R&D is 243 

conducive for reducing carbon emission. On the other hand, Jiao, Jiang, and Yang (2018) 244 

found that R&D generally increases carbon emissions; however, considering regional effects, 245 

R&D reduces carbon emissions.  246 

2.5. Urbanisation-carbon emissions nexus 247 

Urbanization may also play important role in the evolution of carbon emissions. The 248 

theoretical linkage between urbanization and environmental quality has been discussed in the 249 

work of (Poumanyvong & Kaneko, 2010) and (Sadorsky, 2014). Ecological modernization 250 

theory, urban environmental transition theory and compact city theory are the major theories 251 

for explaining the impact of urbanization on the environment (Poumanyvong et al., 2010; 252 

Sadorsky, 2014).  The ecological modernization theory discusses the impact of urbanization 253 

on the environment at the national level while the latter theories focus the impact at the city 254 

level (Poumanyvong et al., 2010). The ecological modernization theory argues that 255 

environmental problems increase as society becomes modernize and thereafter, seek to 256 

address environmental problems at the advanced stage of economic development. Thus, as a 257 
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society makes transition from low-level of economic development to an intermediate level of 258 

development, environmental problems increases; however, at the advanced stage of economic 259 

development with efficient technology, urban agglomeration and knowledge spillover effect,  260 

societies seek to minimize environmental problems such as mitigating carbon emissions 261 

(Gouldson & Murphy, 1997; Mol & Spaargaren, 2000; Poumanyvong et al., 2010).  262 

Similar to the ecological modernization theory, the urban environmental transition 263 

theory also argues that environmental problems differ across different stages of economic 264 

development at the city level (McGranahan, 2010). Thus, as cities become prosperous by 265 

increasing production, environmental problems also increase; however, as cities become 266 

wealthier or at the advanced stage of development, environmental problems reduce as results 267 

of improvement in environmental regulation, technological progress and structural change in 268 

the economy (Poumanyvong et al., 2010; Sadorsky, 2014). As ecological modernization and 269 

the urban environmental transition theories argue for both negative and positive effect of 270 

urbanization on the environment, the net effect of urbanization on the environment is 271 

indeterminate (Sadorsky, 2014). On the other hand, the compact city theory focuses on the 272 

positive externality of urbanization on the environment. Thus, rapid urbanization help cities 273 

to facilitate economies of scale for urban infrastructure and these economies of scale reduces 274 

environmental pollution (Poumanyvong et al., 2010).  Thus, high urban density helps to 275 

reduce travel distance, car dependency, energy consumption and carbon emissions (Burton, 276 

2000; Capello & Camagni, 2000). However, some scholar argues that increasing urbanization 277 

could result in traffic congestions and overcrowding which will consequently increase energy 278 

consumption and carbon emissions (Breheny, 2001; Poumanyvong et al., 2010; Rudlin & 279 

Falk, 1999). Empirically, Poumanyvong et al. (2010) found that urbanization increases 280 

carbon emission. Using data from emerging countries, Sadorsky (2014) found that 281 

urbanization could either increase or reduce carbon emissions depending on the estimator.  282 
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Using data from China, Wang, et al. (2016) reported that urbanization contributes to the 283 

growth of carbon emissions. Similarly, Zhang and Lin (2012) reported that urbanization 284 

increases carbon emissions in China. Additionally, using data from China, the findings of Wu 285 

et al. (2016) revealed that urbanization increases carbon emissions. Using data from 23 286 

European countries, Al-Mulali, Ozturk, and Lean (2015) found that urbanisation increases 287 

carbon emissions. Liu and Bae (2018) further found that urbanisation contributes to the 288 

increased carbon emissions in China. Contrarily, Bekhet and Othman (2017) found that 289 

urbanization contributes to carbon emissions. They further found that an inverted U-shaped 290 

relationship exists between urbanization and carbon emissions.  291 

2.6. Financial development-carbon emissions nexus 292 

Recently, research on the nexus between financial development and carbon emissions 293 

has received interest among energy and environmental economists. It is argued that financial 294 

development could reduce carbon emissions, as it attracts foreign direct investment and 295 

further promotes research and development, which in turn enhance the quality of the 296 

environment (Tamazian et al., 2009). On the other hand, financial development could worsen 297 

the quality of the environment by increasing carbon emissions. (Sadorsky, 2010, 2011) 298 

argues that a developed financial system makes it easy for economic agents to have access to 299 

cheap credits to purchase big-ticket items and expand their existing plants, which increase 300 

energy consumption, thereby increasing carbon emissions. While it is argued theoretically 301 

that the impact of financial development could either improve or worsens the environment, 302 

the empirical findings remain ambiguous. For instance, one category of empirical findings 303 

report that financial development reduces carbon emissions (see Al-Mulali, Tang, & Ozturk, 304 

2015; Tamazian & Bhaskara Rao, 2010; Tamazian et al., 2009) while the second category 305 

report that  financial development simulates the growth of carbon emissions (see Boutabba, 306 

2014; Sehrawat, Giri, & Mohapatra, 2015; Shahbaz, Shahzad, Ahmad, & Alam, 2016). The 307 
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third category of the empirical literature also suggests that financial development has no 308 

relationship with carbon emissions (see Dogan & Turkekul, 2016; Maji, Habibullah, & Saari, 309 

2017; Omri, Daly, Rault, & Chaibi, 2015). 310 

2.7. Industrialisation-carbon emissions nexus 311 

Industrialisation, which is a critical path to economic and social modernization, has a 312 

significant impact on the environment. Industrialization refers to an increase in industrial 313 

activity, and that rapid industrialization leads to higher energy usage because higher value-314 

added manufacturing uses more energy than does traditional agriculture or basic 315 

manufacturing (Sadorsky, 2013). In other words, industrialisation promotes the rapid growth 316 

of fossil fuel consumption and produces significant amounts of carbon dioxide and other 317 

greenhouse gas emissions (Li & Lin, 2015). Using data from China, Wang, Shi, Li, and 318 

Wang (2011) reported that industrialisation increases carbon emissions. Similarly, Liu and 319 

Bae (2018) found that industrialisation increases the intensity of carbon emissions in China. 320 

Using data from MENA countries, the empirical results of Al-Mulali and Ozturk (2015) 321 

revealed that industrialisation contributes to the increase in carbon emissions. Using data 322 

from China, Zhou, Zhang, and Li (2013) found that industrialisation reduces carbon 323 

emissions. The empirical results of Li and Lin (2015) revealed that across all income groups, 324 

industrialisation fuel the growth of carbon emissions.  325 

2.8. Globalisation-carbon emissions nexus 326 

The role of foreign direct investment (FDI) and trade openness on the environment 327 

has been highly debated in the literature. Trade openness impact on the environment through 328 

the scale effect, technique effect and composition effect (Antweiler, Copeland, & Taylor, 329 

2001; Ghani, 2012). The scale effect of trade openness on the environment occurs through the 330 

growth of the economy. Thus, the scale effect suggests that trade openness facilitate 331 

economic growth which in turn result in higher carbon emissions. Additionally, the technique 332 
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effect suggests that trade openness promotes the transfer of environmentally friendly 333 

technologies which could result in reducing carbon emissions. According to the composition 334 

effect, trade openness could affect the environment by changing the structure of the economy. 335 

In addition, FDI could improve or worsen environmental quality. Studies on the impact of 336 

FDI on the environment (carbon emissions) are deeply rooted in the Pollution-haven 337 

hypothesis, Pollution-halo hypothesis and scale effect hypothesis (Pao & Tsai, 2011). 338 

According to the pollution haven, FDI degrades the quality of the environment by increasing 339 

carbon emissions. Thus, weak environmental regulation in a host country could attract the 340 

inflow of FDI by multinational companies that are pollution intensive, thereby increasing 341 

carbon emissions (Shahbaz et al., 2018). Like the pollution-haven hypothesis, the scale effect 342 

hypothesis also suggests that the inflow of FDI could contribute significantly to a host countries’ 343 

economic output, which in turn, increase carbon emissions (Pao & Tsai, 2011; Shahbaz et al., 344 

2018). The pollution-halo effect hypothesis also suggests that FDI could reduce carbon 345 

emissions by increasing the spread the environmentally friendly technologies.  346 

Empirically, Acheampong (2018) found that trade openness decreases carbon 347 

emissions at the global level, Asia-Pacific, MENA and Sub-Saharan Africa countries. 348 

Similarly, Shahbaz, Kumar Tiwari, and Nasir (2013) found that trade openness improves 349 

environmental quality by reducing carbon emissions in South Africa. Antweiler et al. (2001) 350 

further reported that trade is important for improving the quality of the environment by 351 

reducing carbon emissions. Contrarily, Ren, Yuan, Ma, and Chen (2014) found that trade 352 

increases carbon emissions in China. Using data from five South Asian countries, Ahmed, 353 

Rehman, and Ozturk (2017) found that trade openness increases carbon emissions. Focusing 354 

on the impact of FDI on the environment, Shahbaz, Nasreen, Abbas, and Anis (2015) found 355 

that at the global level, FDI increases carbon emissions. However, they concluded that the 356 

impact of FDI on carbon emissions is sensitive to income and regional groups. In France, 357 
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Shahbaz et al. (2018) found that FDI increases carbon emissions. Similarly, Ren et al. (2014) 358 

found that FDI increases carbon emissions in China. Contrarily, using 19 of the G20 359 

countries, Lee (2013) reported that FDI contributes to the reduction in carbon emissions.  360 

3. Data and methodology  361 

3.1. Dataset 362 

The study used time series data which spans between 1980-2015. However, to develop 363 

accurate models, the study follows Sbia, Shahbaz, and Hamdi (2014) and Shahbaz, Hoang, 364 

Mahalik, and Roubaud (2017) to use quadratic-sum approach to convert the annual data from 365 

low-frequency data to high-frequency data. Therefore, quarterly data between 1980Q1-366 

2015Q4 was used for the study. This period represented 144 quarters. Table 1 presents the 367 

proxies for the variables and the justification for selecting the input variables used for the 368 

modelling. In selecting the input variables, the study follows the literature on carbon 369 

emissions to select the fundamental variables that influence carbon emissions intensity. 370 

Except for financial development, all the remaining variables were sourced from World Bank 371 

(2016). The financial development index was obtained from the International Monetary Fund 372 

(IMF)2. Table 2 also presents the descriptive statistics for variables.  373 

 374 

 375 

 376 

 377 

 378 

 379 

                                                           
2
 http://data.imf.org/?sk=F8032E80-B36C-43B1-AC26-493C5B1CD33B 
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 380 

 381 

 382 

Table 1. Variables for the study. 383 

Variable  Code Proxies Definitions Reference 
Carbon 
emissions 
intensity 

CO2 CO2 intensity (kg per kg of 
oil equivalent energy use) 

Carbon emissions intensity is the volume of 
carbon emissions due to economic 
activity/economic growth. It is also defined 
as carbon emissions emitted per unit of 
energy consumed. 

 

Energy 
consumption 

ENER Energy use (kg of oil 
equivalent per capita) 

Energy use refers to use of primary energy 
before transformation to other end-use 
fuels. 

Destek and Sarkodie 
(2019); Sarkodie and 
Strezov (2018). 

Financial 
development 

FD The financial development 
index is a broad-based 
measure which comprises 
bank-based and market-
based indicators of financial 
development.  

Financial development refers to the 
increased flow of foreign direct investment, 
banking and stock market activities.  

Shahbaz, Kumar Tiwari, 
and  Nasir, (2013); 
Tamazian and  Bhaskara 
Rao, (2010); Tamazian et 
al. (2009). 

Foreign direct 
investment 

FDI Foreign direct investment, 
net inflows (% of GDP) 

Foreign direct investment is the net inflows 
of investment to acquire a lasting 
management interest in an enterprise 
operating in an economy other than that of 
the investor. 

Ren, Yuan, Ma and Chen 
(2014); Sarkodie et al. 
(2019); Zhang and Zhou 
(2016). 

Economic 
growth 

GDP GDP per capita (constant 
2010 US$) 

GDP per capita is gross domestic product 
divided by midyear population. It is the sum 
of gross value added by all resident 
producers in the economy plus any product 
taxes and minus any subsidies not included 
in the value of the products. 

Ben Jebli, Ben Youssef 
and Ozturk, (2016); 
Grossman and Krueger, 
(1995); Saboori, Sulaiman 
and Mohd (2012). 

Industrialisation INDUS Industry, value added (% of 
GDP) 

Industrialization refers to an increase in 
industrial activity. It comprises value added 
in mining, manufacturing, construction, 
electricity, water, and gas. 

Wang, Shi, Li and Wang 
(2011); 

R&D R&D Trademark applications, 
total 

 The R&D covers basic research, applied 
research, and experimental development. 

Jiao, Jiang and Yang 
(2018); Shahbaz, Nasir 
and Roubaud, (2018). 

Population POP Population, total Total population refers to the total number 
of people living in a particular geographical 
area. It is based on the de facto definition of 
population, which counts all residents 
regardless of legal status or citizenship. 

Zhu and  Peng (2012) 

Trade Openness TRAD Trade (% of GDP) Trade is the sum of exports and imports of 
goods and services measured as a share of 
the gross domestic product. 

Acheampong (2018); Ren 
et al., (2014) 

Urbanisation URB Urban population (% of 
total) 

Urban population refers to people living in 
urban areas as defined by national statistical 
offices. 

Poumanyvong and  
Kaneko (2010); Sadorsky 
(2014). 

 384 

 385 

 386 

 387 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

18 

 

 388 

 389 

 390 

 391 

 392 

 393 

Table 2. Descriptive statistics. 394 

  Count Mean SD Min Max 

Australia   

ENER 144 5268.8320 423.9819 4533.5690 5971.2290 

FD 144 0.6808 0.2168 0.2731 0.9657 

FDI 144 2.4624 1.7497 -4.3786 7.8503 

GDP 144 41787.9100 8398.9680 29725.5000 55179.3500 

INDUS 144 25.5816 1.1295 22.3563 29.3606 

R&D 144 37201.0600 18086.5500 12935.0600 73741.6600 

POP 144 18800000.0000 2610000.0000 14600000.0000 24000000.0000 

TRAD 144 37.3866 4.7907 28.1058 46.2559 

URB 144 16400000.0000 2540000.0000 12500000.0000 21500000.0000 

CO2 144 3.1120 0.1100 2.8758 3.3627 

Brazil  

ENER 144 1084.3660 166.5520 870.0903 1494.8180 

FD 144 0.4030 0.1575 0.1713 0.6273 

FDI 144 2.0784 1.4981 0.0883 5.1136 

GDP 144 9109.4750 1362.5440 7192.9950 11961.0800 

INDUS 144 29.1012 8.1757 18.8637 43.1403 

R&D 144 88282.5300 37664.9800 27442.0600 164319.7000 

POP 144 167000000.0000 25600000.0000 120000000.0000 207000000.0000 

TRAD 144 21.2789 4.5309 14.2097 29.8731 

URB 144 132000000.0000 29700000.0000 78200000.0000 177000000.0000 

CO2 144 1.5872 0.0987 1.3841 1.7763 

China  

ENER 144 1103.4160 518.0744 596.2954 2238.4880 

FD 144 0.4056 0.1301 -0.0559 0.6458 

FDI 144 2.9237 1.6337 0.2046 6.7016 

GDP 144 2161.0150 1822.3990 345.7698 6642.6710 

INDUS 144 44.9490 1.9043 39.8404 49.0031 

R&D 144 430376.7000 543678.5000 18218.9100 2206486.0000 

POP 144 1210000000.0000 120000000.0000 977000000.0000 1370000000.0000 

TRAD 144 36.8526 14.2636 12.0060 64.6305 

URB 144 437000000.0000 174000000.0000 186000000.0000 770000000.0000 

CO2 144 3.0654 0.2692 2.4261 3.4830 

India  

ENER 144 414.3776 95.8066 283.4874 654.1635 

FD 144 0.3230 0.0974 0.1857 0.4696 

FDI 144 0.8444 0.9051 -0.0012 3.7726 
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GDP 144 818.1663 392.8301 382.6152 1805.4140 

INDUS 144 28.7170 1.4005 25.9435 31.7937 

R&D 144 80968.1400 70535.7400 14350.7800 300555.9000 

POP 144 1010000000.0000 186000000.0000 691000000.0000 1310000000.0000 

TRAD 144 28.9482 14.8495 12.2991 56.5884 

URB 144 282000000.0000 79600000.0000 159000000.0000 432000000.0000 

CO2 144 2.1817 0.3280 1.5424 2.7770 

USA  

ENER 144 7562.8570 351.4622 6692.1100 8074.1540 

FD 144 0.7201 0.1951 0.2862 0.8938 

FDI 144 1.2952 0.7862 0.2494 3.7214 

GDP 144 41135.7900 7427.4450 28281.2400 52366.9900 

INDUS 144 20.9829 0.7909 18.9394 23.4137 

R&D 144 195258.0000 99127.9600 45927.1300 389988.5000 

POP 144 274000000.0000 29400000.0000 226000000.0000 322000000.0000 

TRAD 144 22.9258 4.3746 16.4905 31.2702 

URB 144 214000000.0000 30000000.0000 167000000.0000 263000000.0000 

CO2 144 2.4977 0.0563 2.3631 2.6313 

 395 

3.2. Methodology 396 

3.2.1. Artificial neural networks 397 

The study aims to develop models for predicting/forecasting carbon emissions intensity 398 

for high carbon-emitting countries such as Australia, Brazil, China, India, and USA. ANN is 399 

employed and incorporated in the proposed theoretical framework of the model as shown in 400 

Fig. 1a. The diagram (Fig. 1a) generally depicts the possible relationship connecting nine (9) 401 

determinants (inputs) of CO2 emission intensity and CO2 emission intensity (output) for the 402 

selected countries.  403 

Fig. 1a. A predictive model of CO2 emission intensity. 404 

 405 

Inputs

Determinants of CO2 
emission intensity

Artificial Neural 
Network

Output

CO2 emission intensity
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 409 

Artificial neural networks (ANNs) are data processing systems that mimic the way data is 410 

processed in the human brain (Boateng, Pillay, & Davis, 2019). An ANN is made up of input, 411 

hidden, and output layers which consist of numerous processing components called neurons 412 

(Boateng et al., 2019). The neurons process the data and feed forward to the subsequent layer. 413 

These neurons are connected by corresponding links between layers. On each connected link 414 

is a numeric weight. ANNs can automatically adjust their weights to enhance their behaviour, 415 

unlike statistical models (Boussabaine, 1996). The approach adopted in ANN does not 416 

require prior expertise in computer programming to develop and compute solutions as 417 

required in other numerical solutions (Ghritlahre & Prasad, 2018). A problematic issue in 418 

statistical model development is multicollinearity, i.e., the high degree of correlation among 419 

independent variables, which is much better dealt with in ANN because the assumption of 420 

independent variables being uncorrelated is not made (Detienne, Detienne, & Joshi, 2003). 421 

Moreover, statistical tools cannot deal effectively with nonlinearity while ANNs are 422 

inherently nonlinear nonparametric models that can deal with indefinable nonlinearity in a 423 

straightforward manner (Detienne et al., 2003). Also, ANNs are especially suitable to find 424 

solutions for problems that have fuzzy information and are highly complex where individuals 425 

usually make decisions on an intuitional basis (Ghritlahre & Prasad, 2018). Besides, unlike 426 

most statistical approaches, ANNs do not need predefined mathematical equations of the 427 

relationship between the model inputs and corresponding outputs (Shahin & Elchalakani, 428 

2008). These enable ANNs to overcome the limitations of existing modelling methods. 429 

Despite the differences between ANNs and statistical approaches, both techniques can be 430 
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combined into a solid and powerful methodological platform (Karlaftis & Vlahogianni, 431 

2011). This is because ANN is like a ‘black box’ and hence lacks self-explanation. As 432 

expressed by Alaka et al. (2018 p. 173), ‘the more accurate the tool, the less transparent the 433 

result.’ Consequently, statistical approaches such as descriptive statistics are often 434 

incorporated to produce explanatory results that can easily be interpreted and understood.  435 

ANN has become a popular and useful tool for modelling accurate predictions to solve 436 

complex and nonlinear problems in diverse industrial domains. Many researchers have used 437 

ANN in the field of energy utilization and conversion systems for performance predictions 438 

(Kalogirou, 2000), solar radiations predictions (Yadav & Chandel, 2014), length of stay 439 

predictions on post-coronary care units (Mobley, Leasure, & Davidson, 1995), bankruptcy 440 

predictions (Adnan Aziz & Dar, 2006), and performance prediction of solid desiccant 441 

dehumidifier cooling methods (Jani, Mishra, & Sahoo, 2017). However, the application of 442 

ANN in environmental economics is quite rare. 443 

3.2.2. Optimal model selection 444 

The performance of a neural network model primarily depends on the architecture of the 445 

network and the tuning of various parameters. Fig. 1b. illustrates a robust process used in 446 

selecting the optimal predictive models for the five countries. Details of the whole process 447 

are explained in the proceeding sections. 448 
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 449 

Fig. 1b. Flowchart of optimal model selection. 450 

Source: Authors’ construct. 451 

3.2.3. Development of ANN models 452 

Due to the severe computations on the high dimensional data when training the ANN, 453 

features of the data set are scaled using standardization (xstand) and normalization (ynorm) on 454 

the inputs and output data respectively (Boateng et al., 2019). In normalization, the 455 

observations range from 0 ≤ ynorm ≤ 1 to increase the rate of training the network. Hence, the 456 
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output variable (CO2 intensity) is normalized for each country, as it further facilitates the use 457 

of the sigmoid function for the output layer. Normalization is expressed in Eq. (1): 458 

�
��� = �./0���.12���./0	���                                                                                                           (1)  459 

Where y is the observation for the parameter, min(y) and max(y) is the minimum and 460 

maximum observations respectively. Standardisation is expressed in Eq. (2): 461 

���	
� =	 456                                                                                                                  (2) 462 

Where � is the mean of the observations for the parameter and σ is the standard deviation 463 

of the observations for the parameter. Standardisation tends to centre the input values towards 464 

zero (0). Standardising the input data into a lesser array of variability would likely aid the 465 

effective learning of the neural network while improving the numerical state of the 466 

optimisation problem (StatSoft Inc., 2008). Thus, scaling the data eliminates any instances of 467 

one variable dominating the other (Boateng et al., 2019). The 144 observations for individual 468 

countries (Australia, Brazil, China, India, and USA) were randomly split into training and test 469 

sets to ensure the reliability of the results over time. 80% (115 observations) of the data set 470 

were used for training the model, while the remaining 20% (29 observations) were used to 471 

validate the model. Similar data ratio has been commonly used in previous studies (see 472 

Abidoye & Chan, 2018; Lam, Yu, & Lam, 2008; Morano, Tajani, & Torre, 2015). 473 

Afterwards, a multi-layer perceptron (MLP) with back-propagation (BP) is selected to 474 

achieve the optimal performance of the ANN model. MLP is the most commonly used neural 475 

network (Ghaedi & Vafaei, 2017; Pérez-Sánchez, Fontenla-Romero, & Guijarro-Berdiñas, 476 

2016). The BP algorithm was selected as the learning algorithm. The BP algorithm is often 477 

used to iteratively minimize the cost function concerning the interconnection weight and 478 

neurons thresholds (El Kadi, 2006; Kartalopoulos & Kartakapoulos, 1997). Therefore, the 479 

MLP with a BP algorithm can approximate any continuous function to meet the desired 480 
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accuracy (Patel & Jha, 2015). The sigmoid function, which ranges from 0 to 1, was selected 481 

as the activation function for the output layer while the rectifier function (ReLU) was used as 482 

the activation function for the hidden layer to perform efficient computations. Currently, the 483 

ReLU is the most popular activation function for deep neural networks (LeCun, Bengio, & 484 

Hinton, 2015) while the sigmoid function is the most popular activation function for ANNs 485 

(Alvanitopoulos, Andreadis, & Elenas, 2010). The sigmoid and rectifier functions are defined 486 

as Eqs. (3) and (4) respectively; 487 

����� = ''789:                                                                                                                         (3) 488 

����� = 	;��	�0, ��                                                                                                               (4) 489 

Where ����� is the sigmoid function, ����� is the rectifier function, and �� is the 490 

exponential function.  491 

4. Results and discussion 492 

4.1. Training of models 493 

In training the neural network, the selection of the hidden layer neurons is crucial to the 494 

performance of the model (Boateng et al., 2019). The optimum number of hidden layer 495 

neurons generally has to be found using a trial and error approach (Maier & Dandy, 2001). 496 

However, some general guidelines may be followed. Hecht-Nielsen (1987) suggests the 497 

following upper limit for the number of hidden layer nodes in order to ensure that the neural 498 

network can approximate any continuous function. The upper limit of the number of hidden 499 

layer nodes is calculated using Eq. (5): 500 

 ! ≤ 2 " + 1                                                                                                                         (5) 501 
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Where  ! is the number of neurons in the hidden layer and  " is the number of input 502 

parameters. For this present study, with nine (9) input parameters, the upper limit of the 503 

number of neurons in the hidden layer is given in Eq. (6) and (7): 504 

 ! ≤ 2�9� + 1                                                                                                                        (6)        505 

 ! ≤ 19                                                                                                                                    506 

(7)                                           507 

From this, the number of hidden layer neurons should not be more than 19. However, in 508 

order to ensure that the network does not overfit the training data, the relationship between 509 

the number of training samples and network size also needs to be considered (Maier & 510 

Dandy, 2001). Overfitting is where the model performs well on the training data but poorly 511 

on the test/validation data, and underfitting is where the model performs well on the test data 512 

and poorly on the training data. Rogers and Dowla (1994) recommend the following upper 513 

limit for the number of hidden layer nodes to satisfy the above criteria using Eq. (8): 514 

 ! ≤ BCDBE7'                                                                                                                                (8) 515 

Where  �� is the number of training samples. Consequently, the upper limit for the 516 

number of hidden layer neurons may be taken as the smaller of the values for  ! obtained 517 

from the two formulas. For this present study, with 115 training samples, the upper limit of 518 

the number of hidden layer is given in Eq. (9) and (10); 519 

 ! ≤ ''FG7'                                                                                                                                (9)                      520 

 ! ≤ 11.5~12                                                                                                                      (10) 521 

From this, the number of neurons in the hidden layer should not be more than 12. 522 

Consideration should be given to the selection of the hidden layer neurons since it affects the 523 
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architecture of the network as well as the accuracy. If the network architecture is too 524 

complex, overfitting may occur, and if the architecture is too simple, the preferred estimate 525 

skill may not be achieved (Hippert, Pedreira, & Souza, 2001). From experimentations and 526 

practice, the problem could be argued as trivial. Therefore, the hidden layer neurons required 527 

in an MLP with a single layer could further be determined using a simplified formula, Eq. 528 

(11): 529 

 ! = BE7BKL                                                                                                                          (11) 530 

 ! = G7'L  .                                                                                                                           (12) 531 

 ! = 5 Hidden layer neurons.                                                                                            (13) 532 

Where  � is the number of output parameters. From the computation, five (5) neurons in 533 

the hidden layer were deemed optimal in configuring the neural networks for this study. As a 534 

result, a 9-5-1 MLP with BP was sufficient to perform the necessary predictive capabilities 535 

with a minimal/negligible error. Fig. 2 illustrates the configuration of the three-layer feed-536 

forward MLP. 537 
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 538 

Fig. 2. Configuration of the developed neural network (9-5-1). 539 

At this stage, a stochastic gradient descent batching is applied to the entire neural network 540 

to find the optimal weights. The 9-5-1 MLP for each country is trained a number of times to 541 

update its weights after every 5 observations. The stochastic gradient descent is initialized to 542 

improve the accuracy and minimize the loss over the various rounds (Boateng et al., 2019). 543 

During the training of the neural network, there is some randomness involved because at the 544 

start of training the weights would be randomly initialized. This sort of randomization results 545 

in different results at various iterations. To ensure stable results (reproducibility) each time 546 

the weights are initialized, a robust approach is employed by conducting repeated evaluation 547 

experiments (Boateng et al., 2019). In this approach, each case is run at least 20 times with 548 
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different random weights at the start and then the mean is taken to calculate confidence 549 

intervals (CIs). The accuracies, means, standard deviations (SDs), standard errors (SEs), and 550 

intervals are evaluated to estimate the skill of the stochastic model at a 95% confidence 551 

interval while simultaneously checking the mean squared errors (MSEs) on both the training 552 

and test sets. The MSE metric is used since it is very closely related to the forecast accuracy. 553 

The MSEs are determined using Eq. (14): 554 

PQR = ∑ ��	 − ���L
"U'                                                                                                        (14) 555 

Where n is the number of input data (i = 0, 1, 2, 3, 4,….n), �	 and �� are the actual and 556 

predicted CO2 intensities respectively. For each country, the computed MSE on both the 557 

training and test sets are presented in Appendix Table Ia - Ie. Coefficient of determination 558 

(R2) was further computed for each trial on the actual (independent) and predicted 559 

(dependent) CO2 intensities for each country. The R2 denotes the ratio of the change in the 560 

output parameter that is predictable from the input parameter. The R2 coefficient ranges from 561 

0 to 1, and a coefficient close to 1 depicts an excellent performance. R2 is determined using 562 

Eq. (15): 563 

VL = 1 − ∑ ��W�X�YZE[\∑ ��W���ZE[\ Y                                                                                                           (15) 564 

Where �� is the mean of the CO2 intensities. R2 for each trial in each country is presented 565 

in Appendix Table Ia - Ie. After 20 simulated model trials for each country, the CIs are 566 

presented in Fig. 3a – 3e. For Australia, except the 10th and 16th runs, the remaining runs 567 

contain the population weights mean (see Fig. 3a) while for Brazil, except the 3rd and 4th runs, 568 

the remaining runs contain the population weights mean (see Fig. 3b). For China, except the 569 

1st, 13th, and 19th runs, the remaining runs contain the population weights mean (see Fig. 3c). 570 

For India, except the 1st, 2nd, 3rd, and 13th runs, the remaining runs contain the population 571 
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weights mean (see Fig. 3d). Lastly, for USA, except the 3rd and 4th runs, the remaining runs 572 

contain the population weights mean (see Fig. 3e). By eliminating the runs that could not 573 

contain the population weights mean, random effects are avoided to ensure reproducibility of 574 

results.  575 

 576 

Fig. 3a. Point and interval estimates for 20 trials. 577 

  578 

Fig. 3b. Point and interval estimates for 20 trials. 579 
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 580 

Fig. 3c. Point and interval estimates for 20 trials. 581 

 582 

Fig. 3d. Point and interval estimates for 20 trials. 583 
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 584 

Fig. 3e. Point and interval estimates for 20 trials. 585 

The CO2 intensities resulted from the various iterations for each country is denormalized 586 

to obtain the original and predicted CO2 intensities. Denormalisation is computed using Eq. 587 

(16); 588 

� = �
���]max��� − min���^ + min���                                                                         (16) 589 

Further, for all countries mean absolute deviations (MADs) were computed after 590 

denormalization. Trials with negligible/low MSEs and MADs were selected for further 591 

evaluation. The MADs are presented in Appendix Table Ia - Ie. The MADs for Australia 592 

ranges between 0.01054 to 0.01649; 0.01227 to 0.02305 for Brazil; 0.01536 to 0.03093 for 593 

China; 0.00919 to 0.03652 for India and 0.00458 to 0.03976 for USA. The MADs are 594 

determined using Eq. (17): 595 

P_` = '
∑ |�	 − ��|
"U'                                                                                                       (17)  596 

The optimal models for each country were finally selected based on the run with the 597 

sample weight mean closer to the population weights mean with negligible MAD and MSE. 598 
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Using this criteria, the 18th run for Australia (SE = 0.05641, MAD = 0.01193, MSEtrain = 599 

0.01090, MSEtest = 0.01020), the 11th run for Brazil (SE = 0.06544, MAD = 0.01345, MSEtrain 600 

= 0.00570, MSEtest = 0.00420), the 11th run for China (SE = 0.06433, MAD = 0.01536, 601 

MSEtrain = 0.00330, MSEtest = 0.00330), the 15th run for India (SE = 0.06480, MAD = 602 

0.00919, MSEtrain = 0.00045, MSEtest = 0.00042), and the 6th run for USA (SE = 0.06124, 603 

MAD = 0.00458, MSEtrain = 0.00440, MSEtest = 0.00530) were selected (see Appendix Table 604 

Ia – Ie). This indicates how precise and close the weight points tend to approach/converge at 605 

the true population weights mean with the given data (Boateng et al., 2019). Table 3 presents 606 

the selected models and their confidence limits. 607 

Table 3. Selected models and their confidence limits on extracted weights. 608 

Country Run Lower limit* Upper limit* Mean Pmean 

Australia 18th  -0.124120166 0.097003346 -0.01355841 -0.029038403   

Brazil 11th  -0.114179821 0.142364429 0.014092304 -0.006875717   

China 11th -0.132262709 0.119915949 -0.00617338 -0.007379938   

India 15th  -0.132083021 0.121917025 -0.005082998 -0.004772717   

USA 6th  -0.101997647 0.138054655 0.018028504 0.011375343   

*95% confidence interval, Pmean = population mean 609 

The R2 for each selected model in individual countries are shown in Fig. 4a – 4e. 610 

Australia, Brazil, China, India, and USA achieved coefficients of 0.8011, 0.9139, 0.9521, 611 

0.9944, and 0.8721 respectively. The high R2 values indicate how well the 9-5-1 MLP with 612 

BP models fit the data. Therefore, there are strong relationships between the developed 613 

models and the output variables for each country. 614 
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 615 

Fig. 4a. Scatter chart of actual and predicted CO2 intensities. 616 

 617 

Fig. 4b. Scatter chart of actual and predicted CO2 intensities. 618 
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 619 

Fig. 4c. Scatter chart of actual and predicted CO2 intensities. 620 

 621 

Fig. 4d. Scatter chart of actual and predicted CO2 intensities. 622 
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 623 

Fig. 4e. Scatter chart of actual and predicted CO2 intensities. 624 

The MSE values on both the training and test sets are illustrated in Fig. 5. The MSE 625 

values for each case are approximately Zero (0). This affirms that the developed models are 626 

sufficient to perform the necessary computations with minimal or negligible forecasting error. 627 

 628 

Fig. 5. Regression metric scores. 629 
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4.2. Validation of the ANN models 631 

With 29 test samples, the 9-5-1 MLPs were employed to predict the CO2 emission 632 

intensities from the 9 input parameters. Absolute deviations (ADs) were computed to validate 633 

the models. The AD is equal to the positive proportion of the difference between the actual 634 

(ya) and predicted (yp) observations to the actual observation (ya) of the model (Patel & Jha, 635 

2016). AD for Australia ranged from 0.000128408 to 0.037267504, 0.000544838 to 636 

0.039480646 for Brazil, 0.000551518 to 0.047491399 for China, 0.000404588 to 637 

0.028095168 for India, and 0.00024287 to 0.03549516 for USA (see Appendix Table IIa – 638 

IIc). The range of ADs shows that the trained model is capable of forecasting the intensity of 639 

CO2 emissions for each country. Fig. 6a – 6e show the actual CO2 emission intensities versus 640 

the predicted CO2 emission intensities from the 29 test samples (quarters) for each country. 641 

Fig. 6a. Actual versus predicted CO2 intensities. 642 
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 648 

Fig. 6b. Actual versus predicted CO2 intensities. 649 

 650 

Fig. 6c. Actual versus predicted CO2 intensities. 651 
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 657 

Fig. 6d. Actual versus predicted CO2 intensities. 658 

 659 

Fig. 6e. Actual versus predicted CO2 intensities. 660 
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Chaudhary, & Nagpal, 2012). The closed-form formula presented in this study is suitable for 666 

use where the activation function for the output layer is the sigmoid function. The output O1 667 

from Fig. 2 can be obtained from computing Eq. (18) and (19). Where Eq. (18) is the formula 668 

for predicting the output (carbon emission intensity).  669 

&' = '
'789bcEWdKe∑

fg,\hK\ei9jgDg[\ k                                                                                          (18) 670 

Where r is the number of hidden neurons respectively; biaso is the bias of the output layer 671 

neuron; +�,'!�  is the weight of the link between Hk and O1. Eq. (19) is used for calculating the 672 

kth hidden layer neuron. 673 

#� = ∑ +%,�"!l%U' × $% + �����                                                                                        (19) 674 

Where q is the number of the input parameters; biask is the bias of the kth hidden layer 675 

neuron (Hk); +%,�"!   the weight of the link between I j and Hk. For each country, the weights and 676 

biases are presented in Tables 4a – 4e. 677 

The closed-form expression can be used to predict CO2 emission intensity based on the 678 

previous input values. An illustrative example is demonstrated afterwards.  679 

Table 4a. Weight values and biases for neural network (Australia). 680 

Link Weight/bias 
Number of hidden layer neuron (k) 

1 2 3 4 5 

Input  to hidden layer 

+',�"!  0.480 -0.677 -0.371 0.582 -0.750 +L,�"!  -0.026 0.326 0.018 -0.312 -0.252 +n,�"!  -0.216 0.228 0.126 -0.265 0.180 +o,�"!  -0.183 0.529 -0.179 -0.385 0.457 +F,�"!  0.262 0.220 -0.314 0.401 -0.089 +p,�"!  -0.500 0.486 -0.419 -0.229 0.532 +q,�"!  -0.304 0.597 -0.397 0.190 -0.088 +r,�"!  0.039 0.171 -0.210 0.527 -0.194 +G,�"!  0.029 -0.347 -0.225 0.314 -0.619 

biask -0.036 0.298 0.002 -0.195 0.022 
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Hidden layer to output 
+�,'!�  -0.971 -0.363 0.452 0.276 0.786 

biaso -0.161     

 681 

Table 4b. Weight values and biases for neural network (Brazil). 682 

Link Weight/bias 
Number of hidden layer neuron (k) 

1 2 3 4 5 

Input  to hidden layer 

+',�"!  0.237 0.538 -0.358 -0.035 0.549 +L,�"!  -0.459 -0.651 0.299 -0.376 0.210 +n,�"!  -0.330 0.848 0.196 -0.739 -0.592 

+o,�"!  0.197 0.074 -0.873 0.250 -0.022 +F,�"!  0.208 0.067 -0.346 0.650 -0.307 +p,�"!  0.046 0.313 0.165 -0.303 -0.557 +q,�"!  0.033 -0.466 0.181 -0.338 -0.505 +r,�"!  0.178 0.238 -0.234 0.033 -0.254 +G,�"!  0.538 -0.315 0.054 0.030 -0.145 

biask -0.352 0.032 0.268 0.070 0.024 

Hidden layer to output 
+�,'!�  1.062 1.148 1.091 -0.552 0.028 

biaso -0.236     

 683 

Table 4c. Weight values and biases for neural network (China). 684 

Link Weight/bias 
Number of hidden layer neuron (k) 

1 2 3 4 5 

Input  to hidden layer 

+',�"!  0.240 -0.147 -0.552 0.645 0.384 +L,�"!  0.265 -0.026 0.316 0.491 0.498 +n,�"!  0.299 -0.266 -0.657 -0.462 -0.549 

+o,�"!  0.349 -0.484 -0.777 -0.649 0.522 +F,�"!  0.847 0.285 -0.183 0.724 0.196 +p,�"!  0.294 0.359 0.501 -0.101 0.200 +q,�"!  0.128 -0.636 0.177 -0.348 -0.403 +r,�"!  -0.172 -0.959 0.373 0.505 -0.301 +G,�"!  -0.167 -0.751 -0.273 -0.383 0.507 

biask 0.158 -0.222 0.097 -0.324 -0.190 

Hidden layer to output 
+�,'!�  1.064 -0.727 0.867 -0.484 0.190 

biaso 0.044     

 685 

Table 4d. Weight values and biases for neural network (India). 686 

Link Weight/bias 
Number of hidden layer neuron (k) 

1 2 3 4 5 

Input  to hidden layer 

+',�"!  -0.497 0.383 -0.468 0.626 -0.253 +L,�"!  -0.508 0.130 0.180 -0.467 0.775 +n,�"!  0.237 0.063 0.794 0.218 0.410 

+o,�"!  0.132 0.460 0.011 0.234 -0.154 
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+F,�"!  -0.264 0.359 -0.503 -0.316 0.355 +p,�"!  0.016 0.284 0.228 -0.541 -0.139 +q,�"!  -0.326 0.229 -0.919 -0.329 0.240 +r,�"!  0.344 -0.142 -0.167 0.238 -0.709 +G,�"!  -0.772 -0.250 0.061 0.381 -0.125 

biask -0.169 0.134 -0.307 0.267 0.427 

Hidden layer to output 
+�,'!�  -1.091 0.149 -0.490 1.296 0.342 

biaso 0.122     

 687 

Table 4e. Weight values and biases for neural network (USA). 688 

Link Weight/bias 
Number of hidden layer neuron (k) 

1 2 3 4 5 

Input  to hidden layer 

+',�"!  0.299 0.671 -0.756 0.075 -0.057 +L,�"!  -0.168 -0.370 -0.374 -0.255 0.183 +n,�"!  -0.107 -0.646 -0.148 0.657 0.563 

+o,�"!  -0.436 -0.319 0.305 -0.864 -0.037 +F,�"!  0.348 0.161 -0.263 -0.547 -0.244 +p,�"!  -0.155 0.461 -0.231 -0.066 -0.098 +q,�"!  -0.548 0.712 0.486 -0.585 0.253 +r,�"!  0.574 -0.587 0.211 -0.080 -0.238 +G,�"!  0.189 0.582 0.709 -0.060 -0.034 

biask -0.036 0.298 0.002 -0.195 0.022 

Hidden layer to output 
+�,'!�  -0.427 0.359 -0.004 -0.380 -0.214 

biaso -0.305     

 689 

Illustrative example 690 

For practical purpose, we demonstrate how to use the above closed-form formula for 691 

predicting/forecasting carbon emission intensity3. Using India as an illustration, consider the 692 

nine input parameters (I1 to I9) for determining the CO2 emission intensity for 2011Q4 (Table 693 

5). The CO2 emission intensity for the next quarter (2012Q1) O1 may be obtained by the 694 

following steps: 695 

Table 5. Input values and the output value for 2011Q4, India. 696 

Period 2011Q4 (destandardised) 2011Q4 (standardised) 
Energy consumption (I1) 586.5490144 1.797073524 
Financial development (I2) 0.405568259 0.847736897 
Economic growth (I3) 1.905736931 1.583596755 

                                                           
3 Following the steps used for the illustration, one can predict for the remaining countries (Australia, Brazil, 
China and the USA) by substituting the weights, biases and values of the input variables for respective countries 
into the closed-form formula.  
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Foreign direct investment (I4) 1440.250772 1.172634771 
Industrialisation (I5) 30.00708424 0.921162953 
Technology (I6) 198210.5313 1.662170004 
Population (I7) 1253238699 1.307734943 
Trade openness (I8) 56.58837488 1.861353516 
Urbanisation (I9) 393609283.8 1.402126680 
CO2 emission intensity (O) 2.583927266 0.843589044* 
CO2 emission intensity for 2012Q1 yp  O1? 
Note: *normalised, destandardisation: � = ����	
�×	σ) + � 697 

Step 1. Insert the standardised values of the input parameters (Table 5) and weights and 698 

biases of input to the hidden layer (Table 4d) in Eq. (19) to compute H1 to H5 as given in Eq. 699 

(20) - (24). 700 

H1 = (-0.497I1 - 0.508I2 - 0.237I3 + 0.132I4 - 0.264I5 + 0.016I6 - 0.326I7 + 0.344I8 - 0.772I9) - 0.169              (20) 701 

H2 = (0.383I1 + 0.130I2 + 0.063I3 + 0.460I4 + 0.359I5 + 0.284I6 + 0.229I7 - 0.142I8 - 0.250I9) + 0.134           (21) 702 

H3 = (-0.468I1 + 0.180I2 + 0.794I3 + 0.011I4 - 0.503I5 + 0.228I6 - 0.919I7 - 0.167I8 + 0.061I9) - 0.307            (22) 703 

H4 = (0.626I1 - 0.467I2 + 0.218I3 + 0.234I4 - 0.316I5 - 0.541I6 - 0.329I7 + 0.238I8 + 0.381I9) + 0.267             (23) 704 

H5 = (-0.253I1 + 0.775I2 + 0.410I3 - 0.154I4 + 0.355I5 - 0.139I6 + 0.240I7 - 0.709I8 - 0.125I9) + 0.427            (24) 705 

The values of H1 to H5 are obtained as -2.047745743, 2.05904476, -1.236657889, -706 

0.972341664, and 0.012887535, respectively. 707 

Step 2. Insert the values of H1 to H5 and the weights and biases of the hidden to output 708 

layer (Table 4d) in Eq. (18) as given in Eq. (25). The value of the predicted output O1 is 709 

0.756145926.  710 

&' = '
'789st.\YY	9	 \.tu\\ei9j\	e	 t.\vu\ei9jY	9	 t.vut\ei9jw	e	 \.Yux\ei9jv	e	 t.wvY\ei9jyz                                    (25) 711 

Step 3. The value obtained from Eq. (25) is the normalized value (ynorm). Eq. (16) is used 712 

to denormalize O1 as given in Eq. (26): 713 

�� = 0.756145926�2.777034539 − 1.542419792� + 1.542419792                             (26) 714 
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The actual CO2 intensity (ya) for 2012Q1 is 2.6430 and the predicted CO2 intensity (yp) for 715 

2012Q1 is 2.4760. The AD for this forecast is 0.0632. 716 

6. Sensitivity analysis 717 

Sensitivity analysis is conducted to identify the extent to which each input variable 718 

contributes to the intensity of carbon emissions in Australia, Brazil, China, India, and the 719 

USA. To conduct the sensitivity analysis, the Partial Rank Correlation Coefficient (PRCC) 720 

between carbon emission intensity and each input variable is calculated for each country. Fig 721 

7a-7d depicts the normalised sensitivity weight of each input variable for each country. Fig. 722 

7a shows that in Australia, R&D has the highest sensitivity weight, followed by economic 723 

growth, financial development, foreign direct investment and urbanisation. As depicted in Fig 724 

7a, the PRCC results show that R&D (0.1409), economic growth (0.0752), financial 725 

development (0.0747), foreign direct investment (0.0469) and urbanisation (0.0282) increase 726 

carbon emissions intensity while energy consumption (-0.3165), industrialisation (-0.1125), 727 

population (-0.0835) and trade openness (-0.0311) reduce carbon emission intensity in 728 

Australia. 729 

Fig. 7a. Sensitivity analysis of CO2 emission intensity determinants. 730 
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Fig 7b indicates that in Brazil, urbanisation has the highest sensitivity weight followed by 731 

R&D, energy consumption and financial development. PRCC results show that in Brazil (see 732 

Fig.7b), urbanisation (0.4791), R&D (0.3686), energy consumption (0.2526) and financial 733 

development (0.1491) increases carbon emissions intensity while population (-0.4956), trade 734 

openness (-0.3145), industrialisation (-0.3094), economic growth (-0.2176), population (-735 

0.0835) and foreign direct investment (-0.0991) contribute to reduction in carbon emission 736 

intensity. 737 

Fig. 7b. Sensitivity analysis of CO2 emission intensity determinants. 738 
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Fig. 7c. Sensitivity analysis of CO2 emission intensity determinants. 746 

For India, Fig 7d shows that energy consumption has the highest sensitivity weight 747 
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0.3526), urbanisation (-0.334) and trade openness (-0.1274) contribute to the reduction in 752 

carbon emission intensity. 753 
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Fig. 7d. Sensitivity analysis of CO2 emission intensity determinants. 754 

For USA, urbanisation has the highest sensitivity weight, followed by foreign direct 755 

investment, economic growth and R&D (see Fig 7e). Fig. 7e shows that the factors 756 

contributing to the rise of carbon emission intensity in USA include urbanisation (0.4541) 757 

energy consumption (0.3211), foreign direct investment (0.2044), economic growth (0.1504) 758 

and R&D (0.0667) while trade openness (-0.4261), population (-0.4025), financial 759 

development (-0.3599) and industrialisation (-0.0616) reduces carbon emission intensity. 760 

Fig. 7e. Sensitivity analysis of CO2 emission intensity determinants. 761 
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The results from the sensitivity analysis revealed that each of the input has an important but 762 

different influence on the intensity of carbon emissions of the countries considered. 763 

Therefore, carbon emissions models that tend to ignore these variables could result in the 764 

underestimation of the actual carbon emission intensity.  765 

7. Conclusion and policy implications 766 

The applicability of the artificial neural network (ANN) technique for predicting CO2 767 

emission intensity was evaluated for Australia, Brazil, China, India, and USA. The type of 768 

neural network used for each country was the feed forward multi-layer perceptron (FFMLP). 769 

A stochastic gradient descent with the backpropagation algorithm was employed to train the 770 

networks over several iterations. The 9-5-1 FFMLPs take into account energy consumption, 771 

financial development, foreign direct investment, economic growth, industrialisation, 772 

technology, population, trade openness, and urbanization scores of the selected countries. 773 

Five ANN models were developed with 115 quarters and validated on 29 quarters for the 774 

prediction of CO2 emission intensity for the five countries. The results of this study are very 775 

promising and showed good generalization. The predicted versus actual values indicate 776 

negligible or approximately zero errors for the AD, MAD, MSE, SD, SE, and ME along with 777 

higher coefficients of determination (R2) of 0.80 for Australia, 0.91 for Brazil, 0.95 for China, 778 

0.99 for India, and 0.87 for USA. This study does not only proposes a novel ANN technique 779 

for predicting CO2 emission intensity but also presents a closed-form solution for predicting 780 

CO2 emission intensity for Australia, Brazil, China, India, and USA with insignificant 781 

forecasting deviations. Software developers could also use the closed-form solution, the 782 

model architecture, and the extracted weights and biases of each parameter to develop a CO2 783 

emission intensity application on various platforms for the five countries using any 784 

programming language.  785 
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As a machine learning (ML) technique, the developed ANN models overcome the 786 

limitations of statistical approaches and are very practical to use. Due to the stochastic nature 787 

of neural networks, this study further proposes a robust methodology in selecting an optimal 788 

model for stable reproducibility of results. The ANN models presented in this study have 789 

been validated and reliable to predict the growth of CO2 emission intensity for Australia, 790 

Brazil, China, India, and USA with negligible forecasting errors. Additionally, the results 791 

from the sensitivity analysis revealed that for Australia, R&D has the highest sensitivity 792 

weight while for Brazil and the USA, urbanisation has the highest sensitivity weight. For 793 

China, population size has the highest sensitivity weight while energy consumption has the 794 

highest sensitivity weight in India. The implication from the sensitivity results is that 795 

environmental policymakers in each respective country should prioritise these variables when 796 

designing and implementing environmental (climate change) policies. Additionally, the 797 

models developed from this study could serve as tools for international organizations and 798 

environmental policymakers to design and implement environmental policies and strategies 799 

to monitor and control environmental problems.  800 

Future studies could consider performance evaluation of ANN models for prediction of 801 

CO2 emission intensity with other ML approaches such as support vector regression (SVR) 802 

and recurrent neural network (RNN). This sort of evaluation would offer a dais for the 803 

methodological rigour in the selection of other ML tools that may give predictions that are 804 

more accurate. Other high CO2 emitting countries such as Russia, Japan, and Germany could 805 

adopt the flow process of this study’s methodology to develop robust predictive ANN models 806 

for guiding decision making when drafting environmental (climate change) policies.807 
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Appendix 

Appendix Ia. Comparison of selected optimal model and other ANN models (Australia). 
Model R2 MSEtrain MSEtest SD SE MAD MEy 

1 0.75280 0.01290 0.01290 0.42690 0.06037 0.01410 0.02076 

2 0.64220 0.01180 0.01830 0.42849 0.06060 0.01646 0.01560 

3 0.76190 0.01240 0.01260 0.43203 0.06110 0.01410 0.02152 

4 0.82680 0.01180 0.00830 0.41794 0.05910 0.01054 0.01273 

5 0.79290 0.01140 0.00930 0.43954 0.06216 0.01112 0.00656 

6 0.74940 0.01120 0.01430 0.41651 0.05890 0.01456 0.02506 

7 0.68230 0.01310 0.01470 0.40492 0.05726 0.01447 0.01224 

8 0.80390 0.00750 0.01080 0.43129 0.06099 0.01235 0.02030 

9 0.75600 0.01190 0.01360 0.39712 0.05616 0.01322 0.02507 

10 0.69430 0.01390 0.01840 0.41533 0.05874 0.01649 0.03371 

11 0.67830 0.01180 0.01580 0.40661 0.05750 0.01509 0.01525 

12 0.74020 0.01320 0.01180 0.38728 0.05477 0.01280 0.00765 

13 0.78040 0.01150 0.01080 0.41848 0.05918 0.01265 0.01598 

14 0.64300 0.01040 0.01740 0.41846 0.05918 0.01573 0.01162 

15 0.78840 0.01070 0.01020 0.41634 0.05888 0.01234 0.01297 

16 0.70310 0.00880 0.01380 0.45046 0.06370 0.01378 0.00786 

17 0.76070 0.00910 0.01110 0.44654 0.06315 0.01210 0.01064 

18 0.80110 0.01090 0.01020 0.39887 0.05641 0.01193 0.01778 
19 0.71020 0.01320 0.01310 0.38845 0.05494 0.01276 0.00600 

20 0.77700 0.01290 0.01050 0.38632 0.05463 0.01224 0.01251 
Note: MSE = mean square error, SD = standard deviation, SE = standard error, MAD = mean absolute 
deviation, MEy = mean error on prediction 

Appendix Ib. Comparison of selected optimal model and other ANN models (Brazil). 
Model R2 MSEtrain MSEtest SD SE MAD MEy 

1 0.89430 0.00650 0.00540 0.48114 0.06804 0.01479 -0.00897 

2 0.88680 0.00740 0.00650 0.48239 0.06822 0.01622 -0.01403 

3 0.70370 0.01800 0.01450 0.37132 0.05251 0.02305 -0.01125 

4 0.87870 0.00690 0.00610 0.51981 0.07351 0.01589 -0.00825 

5 0.81460 0.00880 0.00900 0.50558 0.07150 0.02011 -0.00877 

6 0.75540 0.01580 0.01250 0.47784 0.06758 0.02040 -0.01319 

7 0.81900 0.01230 0.00860 0.47053 0.06654 0.01820 -0.00641 

8 0.88110 0.00540 0.00620 0.50556 0.07150 0.01600 -0.00920 

9 0.91020 0.00480 0.00420 0.48854 0.06909 0.01227 -0.00312 

10 0.89100 0.00650 0.00610 0.48999 0.06929 0.01591 -0.01232 

11 0.91390 0.00570 0.00420 0.46277 0.06544 0.01345 -0.00597 

12 0.79740 0.01240 0.01050 0.49058 0.06938 0.02174 -0.01332 

13 0.88450 0.00740 0.00640 0.47772 0.06756 0.01633 -0.01286 

14 0.80050 0.01290 0.00980 0.45652 0.06456 0.01977 -0.01001 

15 0.90760 0.00550 0.00500 0.46081 0.06517 0.01460 -0.01031 

16 0.74890 0.01450 0.01290 0.44537 0.06298 0.02216 -0.01377 

17 0.87870 0.00700 0.00650 0.46594 0.06589 0.01613 -0.01168 

18 0.85470 0.00890 0.00730 0.50782 0.07182 0.01763 -0.00943 
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19 0.84500 0.01160 0.00770 0.50151 0.07092 0.01719 -0.00882 

20 0.86580 0.00800 0.00700 0.44253 0.06258 0.01736 -0.01128 
Note: MSE = mean square error, SD = standard deviation, SE = standard error, MAD = mean absolute 
deviation, MEy = mean error on prediction 

Appendix Ic. Comparison of selected optimal model and other ANN models (China). 
Model  R2 MSEtrain MSEtest SD SE MAD MEy 

1 0.90790 0.00490 0.00650 0.43691 0.06179 0.02537 0.02060 

2 0.93890 0.00370 0.00400 0.44958 0.06358 0.01795 0.00483 

3 0.92060 0.00480 0.00560 0.40740 0.05762 0.02277 0.01653 

4 0.93380 0.00310 0.00450 0.48241 0.06822 0.01990 0.01332 

5 0.84030 0.00900 0.01420 0.49285 0.06970 0.03087 0.05190 

6 0.83180 0.01430 0.01170 0.45484 0.06432 0.02740 -0.01303 

7 0.92000 0.00350 0.00530 0.47023 0.06650 0.02045 0.00511 

8 0.95550 0.00230 0.00320 0.44949 0.06357 0.01794 0.01729 

9 0.91480 0.00380 0.00560 0.44856 0.06344 0.02265 0.00120 

10 0.91250 0.00290 0.00580 0.49364 0.06981 0.02065 0.01016 

11 0.95210 0.00180 0.00330 0.45489 0.06433 0.01536 0.01128 

12 0.92050 0.00360 0.00530 0.43513 0.06154 0.02127 0.01063 

13 0.94290 0.00300 0.00390 0.45553 0.06442 0.01840 0.01299 

14 0.93830 0.00340 0.00430 0.45426 0.06424 0.01920 0.01384 

15 0.92940 0.00330 0.00470 0.44908 0.06351 0.01993 0.00545 

16 0.92370 0.00290 0.00510 0.46805 0.06619 0.02045 0.00669 

17 0.92870 0.00350 0.00480 0.42924 0.06070 0.01980 0.01139 

18 0.93450 0.00410 0.00460 0.41507 0.05870 0.02044 0.01741 

19 0.83630 0.01030 0.01480 0.37316 0.05277 0.03093 0.05035 

20 0.93890 0.00240 0.00420 0.41736 0.05902 0.01935 0.01190 

Note: MSE = mean square error, SD = standard deviation, SE = standard error, MAD = mean absolute 
deviation, MEy = mean error on prediction 

Appendix Id. Comparison of selected optimal model and other ANN models (India). 
Models R2 MSEtrain MSEtest SD SE MAD MEy 

1 0.96870 0.00500 0.00360 0.42662 0.06033 0.02529 -0.02168 

2 0.93530 0.00820 0.00640 0.37290 0.05274 0.03652 -0.03435 

3 0.93600 0.00730 0.00590 0.42554 0.06018 0.03484 -0.02437 

4 0.98260 0.00140 0.00140 0.51222 0.07244 0.01750 0.00730 

5 0.98460 0.00140 0.00110 0.48376 0.06841 0.01670 0.00599 

6 0.98250 0.00093 0.00130 0.47938 0.06779 0.01500 -0.00433 

7 0.98680 0.00086 0.00099 0.48183 0.06814 0.01510 0.00561 

8 0.96480 0.00210 0.00260 0.45240 0.06398 0.01906 -0.01174 

9 0.95520 0.00260 0.00320 0.43564 0.06161 0.02040 0.00338 

10 0.93130 0.00420 0.00480 0.42340 0.05988 0.02908 -0.00064 

11 0.97320 0.00170 0.00190 0.42415 0.05998 0.02126 0.00353 

12 0.94780 0.00290 0.00370 0.42418 0.05999 0.02982 -0.00639 

13 0.98740 0.00088 0.00093 0.44412 0.06281 0.01388 -0.00667 

14 0.96830 0.00200 0.00220 0.43985 0.06220 0.02085 0.00087 

15 0.99440 0.00045 0.00042 0.45818 0.06480 0.00919 -0.00280 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

51 

 

16 0.99060 0.00069 0.00068 0.44326 0.06269 0.01164 -0.00406 

17 0.98220 0.00160 0.00130 0.47885 0.06772 0.01675 0.00521 

18 0.96940 0.00200 0.00220 0.50918 0.07201 0.02186 -0.00113 

19 0.98490 0.00120 0.00120 0.48186 0.06815 0.01722 0.00927 

20 0.95850 0.00250 0.00290 0.47591 0.06730 0.02446 0.00143 
Note: MSE = mean square error, SD = standard deviation, SE = standard error, MAD = mean absolute 
deviation, MEy = mean error on prediction 

Appendix Ie. Comparison of selected optimal model and other ANN models (USA). 
Model R2 MSEtrain MSEtest SD SE MAD MEy 

1 0.84680 0.00550 0.00690 0.41045 0.05805 0.00533 -0.00062 

2 0.81800 0.00810 0.00720 0.43459 0.06146 0.00564 -0.00472 

3 0.87480 0.00420 0.00580 0.39801 0.05629 0.00537 0.00254 

4 0.85110 0.00480 0.00650 0.38049 0.05381 0.00567 0.00141 

5 0.88900 0.00370 0.00530 0.47439 0.06709 0.00499 0.00169 

6 0.87210 0.00440 0.00530 0.43302 0.06124 0.00458 0.00118 
7 0.89690 0.00280 0.00550 0.49859 0.07051 0.00486 0.00291 

8 0.87300 0.00410 0.00560 0.46706 0.06605 0.00521 0.00124 

9 0.86730 0.00610 0.00550 0.44389 0.06278 0.00512 -0.00027 

10 0.86030 0.00340 0.00730 0.46693 0.06603 0.00636 0.00096 

11 0.89030 0.00300 0.00540 0.41896 0.05925 0.00466 0.00251 

12 0.84240 0.00540 0.00630 0.41731 0.05902 0.00532 -0.00034 

13 0.83300 0.00800 0.00680 0.44197 0.06250 0.00518 -0.00490 

14 0.88570 0.00280 0.00590 0.45145 0.06384 0.00518 0.00326 

15 0.88220 0.00480 0.00620 0.44029 0.06227 0.00578 -0.00075 

16 0.84810 0.00550 0.00600 0.42097 0.05953 0.00448 -0.00038 

17 0.87900 0.00320 0.00620 0.45185 0.06390 0.00479 0.00358 

18 0.88500 0.00230 0.00600 -0.10243 0.46541 0.00539 0.00368 

19 0.85260 0.00400 0.00690 0.49119 0.06946 0.00544 0.00191 

20 0.78400 0.00300 0.00670 0.46985 0.06645 0.03976 -0.00843 
Note: MSE = mean square error, SD = standard deviation, SE = standard error, MAD = mean absolute 
deviation, MEy = mean error on prediction 
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Appendix IIa. Results of evaluating predictions for CO2 emission intensities on selected optimal models. 1 

Test samples 
Australia Brazil 

ya yp AD9-5-1 Ey ya yp AD9-5-1 Ey 

1 3.286642486 3.251830856 0.010591852 0.034811631 1.557095671 1.567267068 0.006532288 -0.010171397 

2 3.125154889 3.077880797 0.01512696 0.047274092 1.707167999 1.685288219 0.012816418 0.021879779 

3 3.037133734 3.076276916 0.012888198 -0.039143182 1.608201304 1.60699964 0.00074721 0.001201664 

4 3.233742636 3.289377947 0.017204619 -0.055635311 1.475355053 1.444093351 0.021189274 0.031261702 

5 3.039918372 3.026970948 0.004259135 0.012947424 1.541428543 1.563372641 0.014236209 -0.021944098 

6 3.078738732 3.018433468 0.019587652 0.060305264 1.652063616 1.664560296 0.007564285 -0.01249668 

7 3.057637514 3.067132259 0.003105255 -0.009494745 1.564609994 1.562360404 0.001437796 0.002249591 

8 3.328124784 3.26535332 0.01886091 0.062771464 1.404028125 1.459460063 0.039480646 -0.055431938 

9 3.073089603 3.016134279 0.018533571 0.056955324 1.662672303 1.665176424 0.001506082 -0.002504121 

10 3.251017716 3.249962095 0.000324705 0.001055621 1.407687907 1.455193057 0.033746934 -0.047505151 

11 3.052164158 3.02073217 0.010298263 0.031431988 1.633045241 1.672776636 0.024329635 -0.039731395 

12 3.073111027 3.051729348 0.006957666 0.021381679 1.559834321 1.591888242 0.020549568 -0.032053922 

13 3.1051127 3.009504513 0.030790569 0.095608187 1.478753755 1.486136695 0.004992677 -0.00738294 

14 3.067642054 3.068035964 0.000128408 -0.00039391 1.534474657 1.522429385 0.007849769 0.012045272 

15 3.046993661 3.035909155 0.00363785 0.011084506 1.562172938 1.554131514 0.005147589 0.008041424 

16 3.362218222 3.290196929 0.021420767 0.072021293 1.468488625 1.489780906 0.014499453 -0.021292282 

17 3.249380725 3.287585144 0.011757446 -0.038204419 1.452999157 1.443124254 0.006796221 0.009874903 

18 3.218645018 3.221053761 0.000748372 -0.002408744 1.568904846 1.556687011 0.007787492 0.012217834 

19 3.053339072 3.018070233 0.011550908 0.035268839 1.643779428 1.674355585 0.018601131 -0.030576157 

20 3.083274299 3.094359779 0.00359536 -0.01108548 1.534667613 1.535503758 0.000544838 -0.000836145 

21 3.0758051 3.076858286 0.00034241 -0.001053186 1.768920753 1.724573304 0.025070342 0.044347448 

22 3.097988232 3.074213878 0.007674127 0.023774355 1.525899465 1.568506383 0.027922494 -0.042606918 

23 3.328440301 3.207311214 0.036392147 0.121129088 1.469795395 1.445266386 0.016688724 0.02452901 

24 3.033172721 3.071346465 0.012585417 -0.038173744 1.60941944 1.605598744 0.002373959 0.003820696 

25 3.017621789 3.041308013 0.007849302 -0.023686224 1.502641929 1.522103477 0.012951554 -0.019461548 

26 3.046647468 3.0608779 0.004670849 -0.014230432 1.559945702 1.579782966 0.012716637 -0.019837264 

27 3.0417623 3.07815298 0.011963683 -0.03639068 1.627733054 1.652092246 0.014965103 -0.024359192 
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28 3.112029743 2.996052163 0.037267504 0.11597758 1.587177672 1.571643103 0.009787542 0.015534569 

29 3.083874659 3.102107491 0.005912313 -0.018232832 1.617687941 1.589754347 0.017267604 0.027933594 

  Mean 0.011931939 0.017781567   0.013451706 -0.005974264 
Note: ya = actual CO2 intensity and yp = predicted CO2 intensity, AD = absolute deviation, Ey = ya – yp 2 

Appendix IIb. Results of evaluating predictions for CO2 emission intensities on selected optimal models. 3 

Test samples 
China India 

y_test yp AD9-5-1 Ey y_test yp AD9-5-1 Ey 

1 2.4742588 2.476217685 0.000791706 -0.001958885 1.616775083 1.629716932 0.008004731 -0.012941849 

2 3.04116614 3.006094331 0.011532356 0.035071809 2.286198631 2.325464318 0.017175099 -0.039265687 

3 3.177417239 3.150691432 0.008411173 0.026725807 2.320039421 2.355122234 0.015121645 -0.035082813 

4 2.895104235 2.760091773 0.04663475 0.135012462 1.796703515 1.775702718 0.011688515 0.021000797 

5 3.275505221 3.297245832 0.006637331 -0.021740611 2.462073205 2.453567944 0.003454512 0.008505261 

6 3.455590533 3.433745292 0.00632171 0.02184524 2.642951673 2.608650372 0.012978407 0.034301302 

7 3.158607293 3.14742997 0.003538687 0.011177323 2.186125698 2.17358942 0.005734473 0.012536278 

8 2.860617925 2.796813336 0.022304478 0.063804588 1.736322211 1.737024707 0.000404588 -0.000702496 

9 3.448835101 3.433540262 0.004434784 0.015294839 2.661675841 2.622687942 0.014647877 0.038987899 

10 2.649050948 2.698519267 0.018673978 -0.049468319 1.647965031 1.678007653 0.018230133 -0.030042621 

11 3.480602117 3.431597758 0.014079276 0.049004359 2.558507729 2.576938057 0.007203546 -0.018430329 

12 3.343434723 3.383338484 0.01193496 -0.039903761 2.500872208 2.490311314 0.004222885 0.010560895 

13 2.807543608 2.940877781 0.047491399 -0.133334173 2.007911528 2.002885412 0.002503156 0.005026117 

14 3.014717229 2.963396239 0.017023484 0.05132099 2.060385124 2.06252965 0.001040837 -0.002144526 

15 3.103787048 3.140877455 0.011950049 -0.037090407 2.144148797 2.147372376 0.001503431 -0.003223579 

16 2.985550082 2.983903498 0.000551518 0.001646584 1.87473487 1.862534407 0.006507834 0.012200463 

17 2.872467409 2.742890364 0.045110014 0.129577045 1.76787526 1.756087159 0.006667949 0.011788102 

18 2.546181743 2.565442968 0.007564748 -0.019261224 1.591922905 1.631702439 0.024988355 -0.039779534 

19 3.482958909 3.433740008 0.014131347 0.049218901 2.583927212 2.595336286 0.004415401 -0.011409075 

20 3.082007333 3.052040145 0.00972327 0.029967188 2.130558157 2.132698979 0.001004817 -0.002140822 

21 2.950989792 3.009949746 0.019979722 -0.058959955 2.325705068 2.335725201 0.004308428 -0.010020133 

22 3.389394276 3.355821091 0.009905364 0.033573186 2.639833037 2.594654779 0.017114059 0.045178257 

23 2.989548173 2.939642315 0.016693445 0.049905858 1.967782845 1.960001069 0.003954591 0.007781777 
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24 3.167345389 3.135017181 0.01020672 0.032328208 2.318672702 2.3458725 0.011730762 -0.027199797 

25 2.827133515 2.952901646 0.044486095 -0.125768131 2.042094307 2.037462032 0.002268394 0.004632275 

26 3.420218576 3.338701059 0.023834008 0.081517517 2.619170524 2.606677457 0.004769856 0.012493067 

27 3.194873351 3.177663486 0.005386712 0.017209864 2.213806995 2.250382457 0.016521522 -0.036575462 

28 3.065350205 3.068575734 0.001052254 -0.003225528 2.181732939 2.243029092 0.028095168 -0.061296153 

29 3.239661906 3.255905802 0.005014072 -0.016243897 2.364280606 2.340317968 0.010135276 0.023962638 

  Mean 0.0153586 0.011284375   0.009186077 -0.00280344 
Note: ya = actual CO2 intensity and yp = predicted CO2 intensity, AD = absolute deviation, Ey = ya – yp 4 

Appendix IIc. Results of evaluating predictions for CO2 emission intensities on selected optimal models. 5 

Test samples 
USA 

y_test yp AD9-5-1 Ey 

1 2.574457916 2.58678845 0.004789565 -0.012330535 

2 2.500005366 2.503391864 0.001354597 -0.003386499 

3 2.494462043 2.504325183 0.003954015 -0.00986314 

4 2.538573152 2.532567461 0.002365774 0.006005691 

5 2.476437727 2.479761468 0.001342146 -0.003323741 

6 2.384014635 2.401271511 0.007238578 -0.017256875 

7 2.490700071 2.497796243 0.002849067 -0.007096172 

8 2.530982965 2.540565841 0.003786227 -0.009582877 

9 2.375633112 2.400213481 0.010346871 -0.02458037 

10 2.558776552 2.559767265 0.000387182 -0.000990712 

11 2.411677746 2.405923085 0.002386165 0.005754661 

12 2.437965418 2.42529669 0.005196435 0.012668729 

13 2.527679338 2.528293237 0.00024287 -0.000613898 

14 2.498110568 2.51145488 0.005341762 -0.013344312 

15 2.510632326 2.498814312 0.004707186 0.011818014 

16 2.549300685 2.548590773 0.000278473 0.000709912 

17 2.536693642 2.531737129 0.001953926 0.004956512 

18 2.56326721 2.578462067 0.005927926 -0.015194858 

19 2.402602563 2.403664347 0.000441931 -0.001061784 
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20 2.495939797 2.499950654 0.001606952 -0.004010857 

21 2.508659751 2.495357814 0.005302408 0.013301937 

22 2.438174074 2.423021859 0.006214575 0.015152215 

23 2.546923136 2.545363046 0.000612539 0.00156009 

24 2.497267631 2.50378933 0.002611534 -0.006521699 

25 2.509936628 2.515705771 0.002298522 -0.005769143 

26 2.463329963 2.44271247 0.008369765 0.020617493 

27 2.481426423 2.494025421 0.005077321 -0.012598998 

28 2.497681992 2.40902637 0.03549516 0.088655622 

29 2.498347921 2.497707739 0.000256242 0.000640182 

  Mean 0.004577094 0.001183262 
Note: ya = actual CO2 intensity and yp = predicted CO2 intensity, AD = absolute deviation, Ey = ya – yp 6 
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HIGHLIGHTS 

• ANN models were developed to predict carbon emissions for five countries. 

• Stochastic gradient descent batching was employed to train the models. 

• Predicted versus actual carbon emissions shows approximately zero forecasting errors.  

• Sensitivity analysis shows significant contributory variables for each country. 

• A simplified closed-form formula for hands-on prediction of carbon emissions. 
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